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Travelling waves in a nonlinearly suspended
beam: some computational results and

four open questions

B y Y. Chen and P. J. McKenna

Department of Mathematics, University of Connecticut, 196 Auditorium Road, U-9,
Room 111, Storrs, CT 06269-3009, USA

A new nonlinear differential equation for a nonlinearly supported beam is pro-
posed. Numerical evidence is presented on the existence, interaction, and sponta-
neous decomposition properties of travelling waves in such a beam. In particular,
these waves seem to possess the ability to pass through each other like solitons, and
more complicated shapes seem to decompose into simpler ones. At present, there is
no mathematical explanation for these phenomena, and several open mathematical
questions are posed.

1. Introduction

The purpose of this paper is to bring to the attention of the mathematical community
a dramatic gap between a rich and complex collection of computational results on
travelling waves in a simple model of a nonlinearly supported beam, and an almost
complete absence of mathematical explanation for these results.

McKenna & Walter (1990) found travelling wave solutions to nonlinear beam equa-
tions on the real line of the form

utt + uxxxx + u+ − 1 = 0.

The search for travelling wave solutions of the form u(x, t) = 1 + y(x − ct) then
led to the ordinary differential equation

y′′′′ + c2y′′ + (y + 1)+ − 1 = 0. (1.1)

In McKenna & Walter (1990), this was shown to have solutions decaying to zero
exponentially by ‘brute force’, namely, by solving the two linear ordinary differential
equations explicitly for y > −1 and y < −1 and then matching them at y = −1.
This purely calculus approach had serious limitations. The slightest perturbation in
the nonlinearity rendered all these calculations invalid.

In Chen & McKenna (1997), this problem was solved in the sense that a qualitative
proof based on the Mountain Pass lemma (Rabinowitz 1986; Brezis & Nirenberg
1991) was given which showed that for nonlinearities ‘like’ (y+ 1)+− 1, the ordinary
differential equation

y′′′′ + c2y′′ + f(y) = 0 (1.2)
had at least one non-trivial solution. This was done by looking for critical points of
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the functional

I(y) =
∫
R

( 1
2 |y′′|2 − 1

2c
2|y′|2) dx+

∫
y6−1

(|y| − 1
2) dx+

∫
y>−1

( 1
2 |y|2) dx. (1.3)

It was shown that y ≡ 0 was a local minimum for I and that it was possible to
choose other functions in H2(Rn) which had a lower value for I than I(0). Modulo
some technical details, this enabled us to use the Mountain Pass lemma with concen-
trated compactness to prove the existence of non-trivial solutions for a larger class
of nonlinearities f .

Already, we come to the first problem.

Problem 1.1. Can one prove that there are many solutions of the differential
equation (1.3)?

The calculations of McKenna & Walter (1990) suggest that there are many, pos-
sibly infinitely many, solutions, but all that can be proven is that there is at least
one non-trivial solution.

Having found travelling wave solutions of (1.3), the next natural question was how
these solutions behaved when used as initial data for the full initial value problem
(1.1). In particular, it was natural to ask whether some or all of the travelling wave
solutions were stable and persisted under slight perturbation in the initial data. If
one was daring, one might hope for interesting interaction behaviour when two of
these waves collided.

As described in Chen & McKenna (1997), we commenced such an investigation.
However, almost immediately, we recognized a significant problem: the nonlinearity
u+ is not smooth and therefore any numerical procedure which treats this function
may have large errors. This seemed to be the case in computations.

Accordingly, we decided to substitute for the nonlinearity u+−1 a function which
shared some of the qualitative behaviour but was analytic. The function we chose
was f(u) = eu−1 − 1 in the beam equation,

utt + uxxxx + f(u) = 0,

giving rise to the nonlinear ordinary differential equation

y′′′′ + c2y′′ + ey − 1 = 0. (1.4)

Again, y ≡ 0 is a solution and when one writes the corresponding variational
problem, it corresponds to a local minimum of the functional. Again, it is easy to
find functions at a lower elevation than the local minimum. However, carrying out
the technical details of the previous existence proof has so far proven too difficult.

This brings us to our second open problem.

Problem 1.2. Can one prove the existence of any non-trivial solutions of (2.1)?

The next difficulty we faced with this nonlinearity was that of numerically finding
solutions of (2.1). There were two solutions to this difficulty. The first one used was
a numerical version for the Mountain Pass lemma, which has now been used for a
variety of different nonlinear problems.

A second and much more efficient method was suggested to us by Champneys &
Spence (1993), whose shooting method proved much faster in finding solutions of
(2.1). Experiments described in this paper use solutions obtained by both methods,
but primarily the second.
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Figure 1. Travelling wave solutions of utt + uxxxx + eu−1 − 1 = 0 with speed.

The rest of this paper will consist of three sections. The first will briefly discuss the
solutions of (2.1) found by the two methods, with a brief description of the Mountain
Pass algorithm.

The next will discuss our observations of the stability properties of the waves when
solved as an initial value problem for the beam equation. Finally, we describe some
curious interaction properties of these waves, as yet entirely unexplained, including
the facts that the waves appear to pass through each other, that their stability prop-
erties remain mysterious and that they occasionally can spontaneously decompose
to simpler travelling waves of different speeds and magnitudes.

We should emphasize that these properties are of primarily mathematical interest,
indicative of a deep and complex underlying structure. We do not expect to see such
behaviour in modern-day suspension bridges.

2. Mountain pass algorithm

Based on the Mountain Pass theory, a numerical algorithm was developed in Choi
& McKenna (1993).

It has been shown in Chen & McKenna (1997) that if a functional I ∈ C1(H2, R)
has a local minimum point e1 and another point e2 whose altitude I(e2) is lower than
that of the minimum, then with some additional technicalities, we may conclude that
the infimum of the maxima of I along all paths joining e1 and e2 is a critical value
of I.

On a finite-dimensional approximating subspace, we take a piecewise linear path
from e1 to e2 and find the maximum of I along that path. Then we deform the path
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Figure 2. Travelling wave solutions of utt + uxxxx + eu−1 − 1 = 0 found by continuation
methods.

by pushing the maximum point in the direction of steepest descent. This step will
be repeated until the critical point is reached.

Because of the fast growth of the function eu−1 − 1, we have encountered some
difficulty in proving the existence of the travelling wave solutions for the equation

utt + uxxxx + eu−1 − 1 = 0, −∞ < x <∞. (2.1)

But by applying the Mountain Pass algorithm on a finite subinterval of R, we
did obtain numerical solutions. The functional defined on H2(−L,L), whose critical
points correspond to weak solutions of (2.1), is given by

I(y) = 1
2

[ ∫ L

−L
(|y′′|2 − c2|y′|2) dx

]
+
∫ L

−L
F (y) dx, (2.2)

where F (y) = ey − y − 1.
The algorithm is similar to that for finding the Mountain Pass type critical points

in the direct variational formulation of semilinear elliptic equations (Choi & McKen-
na 1993), the major difference being that the steepest descent direction is being
sought in the H2 norm in our case.

The conclusions of the search for solutions of (2.1) seem to indicate that the
situation is rather similar to that of McKenna & Walter (1990). Solutions seem to
exist in the range 0 < c <

√
2. As the wave speed approaches

√
2, the solutions

become highly oscillatory in nature, whereas when c approaches 0, they appear to
go to infinity in amplitude.

There appear to be many different solutions for each wave speed and these can be
obtained either by the Mountain Pass algorithm and varying the choice of the initial
path by choosing different points for e2, or by varying the shooting parameters.

We show some of the solutions obtained in figures 1 and 2. Notice that figures 1c
and 1d are two different waves obtained from the Mountain Pass algorithm with the
same wave speed.

3. Stability properties

Taking one of the numerical solutions we have obtained by applying the Mountain
Pass algorithm as the initial function u(x, 0), we solve the initial-boundary value
problem

utt + uxxxx + f(u) = 0
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by using a standard explicit central finite difference scheme (Strikwerda 1989) with
the following non-reflecting boundary conditions:(

∂

∂t
− c ∂

∂x

)
u(−L, t) = 0,

(
∂

∂t
+ c

∂

∂x

)
u(L, t) = 0(

∂

∂t
− c ∂

∂x

)2

u(−L, t) = 0,
(
∂

∂t
+ c

∂

∂x

)2

u(L, t) = 0.

 (3.1)

We then follow the solution of the initial value problem for some time in the
hope of observing the stability properties of these waves. Figure 3 shows one of such
travelling wave solutions.

We have also tested the stability of the solutions by disturbing the initial function
u(x, 0) or the speed c of the wave, and the waves maintained the same basic shape
over time. The results show that some of the solutions are quite stable in a sense
that the nearby states remain nearby for future times (Strauss 1989).

The surprising conclusion seems to be that the stability of the simple wave is
related to the shape. If a simple solitary wave is concave up about the centre, then
it will be stable over a large time interval. On the other hand, if it is concave down,
then solving the same initial value problem results in the wave rapidly losing its
shape. Some of the tests are shown in figures 4 and 5.

In the case that a simple wave is unstable, an even more interesting phenomenon is
observed in figure 5 (with periodic boundary conditions). The unstable wave seems
to break into two simple stable waves, both concave up about their centres, one
moves slower with larger amplitude, the other moves faster with smaller amplitude.

There are also multi-bump solutions—solutions which appear to be the linear com-
bination of two waves that are separated apart. Two multi-bump solutions obtained
by the continuation method are shown in figure 6.

So far it is not clear whether or not the stability properties of this kind of solutions
are related to their shapes. Shown in figure 7 is a solution which appears to be a
combination of two stable waves. This solution is stable for a long period of time,
but is concave down at the central point.

Problem 3.1. Prove that some solutions of (2.2) are stable. Account for why
some of the solutions appear unstable. What is the connection between the shape of
the solutions and their stability properties?

To the best of the authors’ knowledge, the only results available on stability which
might be related are those of Levandosky (1998) and Sandstede (this volume), which
are for a different type of nonlinearity.

4. Interaction properties

To observe the interaction of two travelling waves, we first obtain two solutions
y1(t) and y2(t) by the Mountain Pass algorithm, then take the initial function u(x, 0)
to be the linear combination of these two solutions:

u(x, 0) = y1(x+ L) + y2(x− L) + 1, (4.1)

where L is quater the length of the experimental interval.
We can make the two waves travel toward each other by taking opposite signs

for their wave speeds. It is shown in figure 8 that the two waves emerge apparently
intact after the collision.
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Figure 3. A travelling wave solution of utt + uxxxx + eu−1 − 1 = 0 with speed c = 1.354.
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Figure 4. A stable solution with speed c = 1.10.
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Figure 5. An unstable solution with speed c = 1.10.
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Figure 6. Solutions with speed c = 1.30.
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Figure 7. Solutions with speed c = 1.30.

We have not been able to observe this behaviour at wave speeds that are not close
to
√

2. This may be because that as the wave speed gets smaller, the amplitude
gets larger and that makes the initial value problem harder to solve accurately on a
relatively coarse grid.

Usually, when one sees two nonlinear waves interacting in this manner, one expects
to find additional conservation laws that are obeyed by solutions of the equation.

Problem 4.1. Are there additional conserved quantities (apart from energy) for
solutions of equation (2.2)? Can one give an explanation for the apparent property
that solutions pass through each other?

The authors are grateful to the referee who pointed out the connection with two
other papers in the literature, namely Iooss & Pérouème (1993) and Grimshaw et al.
(1994). An analysis of what happens in the neighbourhood for c =

√
2 was carried

out using normal form analysis for some related problems including the Korteweg–de
Vries equation.

5. Summary

We summarize the results of this paper. Probably the most striking result is the
observation that these travelling waves pass through each other without losing their
stability. This type of interaction of nonlinear waves has only previously been seen
in completely integrable systems.
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Figure 8. Interaction of two traveling waves of utt + uxxxx + eu−1 − 1 = 0.

This leads us to wonder whether we are in the presence of such a system†. Among
experts, there seems to be little agreement about how to go about determining
whether this is the case, other than be searching for additional conservation laws,
in which we have so far been unsuccessful. Is there a methodical way to test for
additional conservation laws?

Alternatively, this remarkable property of passing through each other may be
related to some entirely different deep underlying structure, whose nature is still not
apparent, but not of the completely integrable variety.

The experiment shown in figure 5 is also puzzling. Apparently, the more complex
many-noded wave can exist for a while, and then spontaneously decompose into two

† One internationally known figure conjectured that equation (2.1) is connected to the Toda lattice,
but the nature of the connection is as yet not clear.
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simpler waves with less structure. While we are not proposing that a nonlinear beam
equation should model elementary particle interactions, this result nonetheless also
hints at some deeper fundamental property of these waves.

Just as earlier results on completely integrable systems were preceded by a period
where the numerical results were unexplained, we believe this may be the case here,
and that in the near future we shall have significant mathematical progress on the
existence, stability, interactions and decompositions of these remarkable waves.
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